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ABSTRACT

In this paper, we study a private-information contest game with two stages. In stage

1 players simultaneously choose whether to announce their group identity, and in stage 2

each player simultaneously plays a within-group lottery contest and an across-group con-

test. Players’ information sharing incentives are analyzed and all symmetric equilibria of

the game are fully characterized. Our results show that (1) full disclosure by both types

is always one of the equilibria; (2) full concealment by both types can be supported as an

equilibrium information strategy when players’ types are sufficiently dispersed, and when

types are concentrated, there is an equilibrium in which the high type randomizes and the

low type fully conceals.
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1 Introduction

We study a private-information contest game with group identity over the valuation of

the prize. In stage 1 players simultaneously choose whether to disclose their group identity,

and in stage 2 each player simultaneously plays one lottery contest against a player from

the same group and one contest against a player from the different group. Players maximize

their average expected payoff from participating in these two contests. We show that there

are only two symmetric equilibria in terms of players’ incentive to share their own group

identities, with one of them being full disclosure by both types. When types are dispersed,

full concealment by both types is one of the other equilibrium information strategy profiles,

while the other equilibrium is such that the high type randomizes between concealment and

disclosure while the low type fully conceals when types are concentrated.

We position our study within the literature on Tullock contests with information. Many

studies in this area consider an exogenous informational environment (see Hurley and

Shogren, 1998; Malueg and Yates, 2004; Fey, 2008; Wärneryd, 2003, 2013; Wasser, 2013;

Einy et al., 2015; among others) or study the contest designer’s information disclosure prob-

lem (for example, Qiang et al., 2014; Zhang and Zhou, 2016; Chen et al., 2017; Jiao et al.,

2017; Serena, 2018; Lu et al., 2018; Chen, 2019; Cai et al., 2019). Our focus is more aligned

with studies in which information is endogenized through players’ incentives. Along these

lines, Kovenock et al. (2015) considers information sharing in all-pay auction contests, Wu

and Zheng (2017) and Ewerhart and Grünseis (2018), both assuming ex-ante commitment,

study type-independent information sharing in lottery contests and type-dependent infor-

mation sharing in non-deterministic contests of more general forms.1 Departing from the

existing studies, we examine the interim information sharing incentive by players of different

types without the commitment assumption, in a lottery contest environment.

Our work also contributes to the literature by considering a new setup in which every

player competes against both types of opponents whose types he/she may not know. This

differs from the traditional setup where every player competes against only one opponent

with an equally likely type.2

1All-pay auction and Lottery contest are two special cases of Tullock Contests where the decisiveness
parameter in the success function is infinity in the former setup and is equal to 1 in the latter setup.

2The belief updating mechanisms are different under these two setups with asymmetric information.
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2 The Model

There are two groups of risk-neutral players, who are potential contestants in 2-person

lottery contests. Groups, denoted by GL and GH , respectively, are of equal size. Players

from different groups differ in their value of winning the contest, with vH > vL > 0. Every

player participates in one within-group contest in which the opponent is randomly picked

from the same group and one across-group contest in which the opponent is randomly

picked from the different group, with no information feedback in-between. A player i’s

group identity, also known as his/her type, denoted by ti, where ti ∈ {L,H}, is privately

known. We have ti = L and vi = vL if i ∈ GL, and we have ti = H and vi = vH if i ∈ GH ,

where H denotes high valuation and L denotes low valuation.

In a typical lottery contest, two players (i = A,B) compete by simultaneously exerting

non-negative effort xi. The success function for player i is given by pi(xA, xB) = xi
xA+xB

if

xA + xB > 0 and pi(xA, xB) = 1
2

if xA = xB = 0. The expected payoff of player i with value

of winning vi under the effort profile (xA, xB) is thus ui(xA, xB; vi) = pivi − xi.
Before the contest stage starts, each player can simultaneously decide whether to reveal

his/her group identity information to his/her opponents. We denote a typical player i’s in-

formation sharing strategy as si(ti), with si : {H,L} −→ [0, 1], representing the probability

of disclosing i’s group identity information. In the extreme cases, si = 0 refers to the full

concealment decision, which is also denoted by C, and si = 1 refers to the full disclosure

decision, which is also denoted by D.

Depending on players’ information strategies, the contest in the second stage may be

either with symmetric information (no information or full information) or with asymmetric

information in terms of players’ group identities. Each player i chooses his/her effort profile

(xi1, xi2) to maximize his/her average payoff from the two lottery contests participated in.

The timeline of the game is as follows. Stage 1 (Information Sharing): Each player

i simultaneously decides on si. Stage 2 (Within-Group and Across-Group Contests):

Depending on si, players infer the group identity information of their opponents, and then

participate in the two lottery contests described above, by choosing effort profile (xi1, xi2).

3 Analysis

We focus on symmetric equilibria where players of the same type play the same strategy,

and we use backward induction to solve the equilibrium of the game. In the following
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analysis, we first characterize players’ optimal effort strategies in stage 2, and then analyze

players’ information sharing incentives in stage 1.

3.1 Equilibrium Effort in Stage 2

Depending on players’ information regarding the group identities of their opponents,

there are 3 scenarios for each contest: (1) both players have information regarding each

other’s type; (2) both players have no information regarding each other’s type; (3) Only one

player has information regarding the other player’s type.

Scenario 1: Full Information

If both players (i and −i)’ types ti and t−i are publicly known, such a contest has been

studied in Leininger (1993), and the unique equilibrium effort strategy profile (xFi (ti, t−i), x
F
−i(ti, t−i))

is given by

xFi (ti, t−i) =
viv−i

(vi + v−i)2
vi, xF−i(ti, t−i) =

viv−i
(vi + v−i)2

v−i,

with equilibrium payoff

uFi ≡ ui(x
F
i , x

F
−i; vi) =

(vi)
3

(vi + v−i)2
, uF−i ≡ x−i(x

F
i , x

F
−i; v−i) =

(v−i)
3

(vi + v−i)2
.

Scenario 2: No Information

If both players’ types are private information, then each contest is equally likely to be

a within-group contest or an across-group contest for both players. Such a setup is mathe-

matically equivalent to a 2-person lottery contest with binary types of equal chance, which

has been studied in Malueg and Yates (2004), and there is a unique equilibrium. Player i’s

equilibrium effort strategy given his/her type ti, denoted as xNi (ti), has the following form:

xNH ≡ xNi (H) =

(
1

8
+

1

2

vHvL

(vH + vL)2

)
vH , xNL ≡ xNi (L) =

(
1

8
+

1

2

vHvL

(vH + vL)2

)
vL,

with expected equilibrium payoff

uNH ≡
1

2
ui(x

N
H , x

N
H ; vH) +

1

2
ui(x

N
H , x

N
L ; vH) =

1

2

(
v2H

(vH + vL)2
+

1

4

)
vH ,

uNL ≡
1

2
ui(x

N
L , x

N
H ; vH) +

1

2
ui(x

N
L , x

N
L ; vH) =

1

2

(
v2L

(vH + vL)2
+

1

4

)
vL.
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Scenario 3: Asymmetric Information

If one player’s type is publicly known while the other player’s type is private infor-

mation, such a contest is equivalent to one with asymmetric information, which was first

studied in Zhang and Zhou (2016) for the interior solution and later fully characterized in

Wu and Zheng (2017). Denote xAj as the equilibrium effort strategy of the player whose type

vj(j = H,L) is public information. Similarly, the equilibrium effort strategy of the player

whose type vk(k = H,L) is privately known, given the other player’s type vj(j = H,L), is

refereed to as xAjk. For convenience, define δ ≡ vH
vL

, so δ > 1. Equilibrium effort strategies

xAj and xAjk have the following forms:

xAL =

(√
vH +

√
vL

3vH + vL

)2

vHvL, xAH =


(√

vH+
√
vL

3vL+vH

)2
vHvL if δ ≤ 9

vH
9

if δ > 9.

xALH =
√
vH

√
xAL − x

A
L , xALL =

√
vL

√
xAL − x

A
L , xAHH =

√
vH

√
xAH − x

A
H ,

xAHL =

{ √
vL
√
xAH − xAH if δ ≤ 9

0 if δ > 9.

3.2 Information Sharing in Stage 1

Now we examine players’ information sharing incentives in Stage 1, by considering all

possible cases and comparing players’ payoffs under different information strategies in each

case. For simplicity, we denote a typical player i’s information strategy given his/her type

is j (j ∈ {H,L, }), si(ti = j), by sij. By the symmetry assumption, in equilibrium we have

sij = si′j for any i and i′ of the same type. Thus, it is without loss of generality to write

the equilibrium information strategy profile as (sL, sH).

For equilibrium analysis, it is essential to consider the information sharing outcome

given information sharing strategies. We use P (sL, sH) ∈ [0, 1] to denote the probability

that a player can infer the type of his/her opponents when the opponents’ information

strategies are sL and sH .3 Given that different players’ information strategies are played

independently, we have

P (sL, sH) = 1− (1− sL)(1− sH).

3Note that each player will always play against two opponents of different types, respectively. Thus, as
long one opponent discloses his/her type, the other opponent’s type can be immediately inferred. Therefore,
the probability that a L-type opponent is made known to a player is always equal to the probability that a
H-type opponent player is made known to that player.
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The relationship between the information sharing strategy profile (sL, sH) and infor-

mation sharing outcome P (sL, sH) implies that either sL = 1 or sH = 1 alone will lead to

P (sL, sH) = 1. In other words, one type’s information strategy will become ineffective if the

other type chooses to share information. Based on this observation, we immediately have

the following result:

Proposition 1. (sL = 1, sH = 1) is an equilibrium information sharing strategy profile,

resulting in information sharing outcome P = 1.

Besides the above trivial equilibrium, we are more interested in equilibra where players’

information strategies are effective. Before conducting further equilibrium analysis, we

first establish three results regarding players’ information sharing incentive. Due to space

concerns, all proofs for these lemmas are relegated to the Appendix.

Lemma 1. If the opponents’ types are known to a player i while i’s own type is unknown

to the opponents, then i is better off by setting si = 0 regardless of his/her own type.

Lemma 2. If the opponents’ types are unknown to an L-type player i and i’s own type is

unknown to the opponents, then i is better off by setting siL = 0.

Define δ∗ > 1 such that 1
2
( δ∗2

(1+δ∗)2
+ 1

4
) = 5

9
. It is easy to obtain the unique value of δ∗

which is δ∗ ≈ 12.88.

Lemma 3. If the opponents’ types are unknown to a H-type player i and i’s own type is

unknown to the opponents, then siH = 0 when δ > δ∗ ≈ 12.88, siH = 1 when 1 < δ < δ∗ ≈
12.88, and siH ∈ [0, 1] when δ = δ∗ ≈ 12.88.

The above three lemmas provide us with a good understanding for players’ incentive to

share information under different informational environments. Lemma 1 implies that when a

player can distinguish between the within-group contest and the across-group contest, both

types will have incentive to conceal their own group identities. Lemma 2 further tells us that

an L-type player has incentive to conceal his/her group identity even when he/she cannot

distinguish between the within-group contest and the across-group contest. By contrast,

Lemma 3 shows that an H-type player’s information sharing incentive when he/she has no

information about the opponents’ types, depends on how concentrated/disperse the type

distribution is.

Combining the results in Lemmas 2 and 3, we can immediately see that when types are

dispersed (δ ≥ δ∗), players who are uninformed about their opponents’ types will always
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have incentive to conceal, regardless of their own types. Thus, such a full concealment

information strategy can be supported in equilibrium, and we formally state this result in

the following proposition.

Proposition 2. When δ ≥ δ∗ ≈ 12.88, (sL = 0, sH = 0) is an equilibrium information

sharing strategy profile, resulting in information sharing outcome P = 0.

When player types are concentrated (1 < δ < δ∗) however, players of different types

will differ in their information sharing incentive. For such a type distribution, Lemmas 1

and 2 show that an L-type player prefers concealment (if possible) whether or not he/she

knows the types of his/her opponents, while Lemmas 1 and 3 show that an H-type player

may have different information sharing incentives depending on his/her information about

his/her opponents’ types. This observation implies that a symmetric type-dependent infor-

mation strategy profile where the low type conceals and the high type randomizes between

concealment and disclosure can be supported in equilibrium. We characterize such an equi-

librium in the following Proposition, and relegate the proof to the Appendix.

Proposition 3. When 1 < δ < δ∗ ≈ 12.88, (sL = 0, sH = s∗) is an equilibrium information

sharing strategy profile, resulting in information sharing outcome (P = s∗), where s∗ ∈ (0, 1)

is uniquely determined by equation (1) if 1 < δ ≤ 9 and by equation (2) if 9 ≤ δ < δ∗ ≈
12.88.4 Equations (1) and (2) are given by

s∗

8
+

s∗δ2

2(δ + 1)2
+(1−s∗)

(
1

2

(
√
δ + 1)2(δ + 1)

(3 + δ)2

)
=
s∗

2

(
1−

1 +
√
δ

3δ + 1

)2

+
s∗

2

(
1−

1 +
√
δ

3 + δ

)2

+
(1− s∗)

2

(
δ2

(δ + 1)2
+

1

4

)
(1)

s∗

8
+

s∗δ2

2(δ + 1)2
+ (1− s∗)

5

9
=
s∗

2

(
1−

1 +
√
δ

3δ + 1

)2

+
s∗

2

(
4

9

)
+

(1− s∗)
2

(
δ2

(δ + 1)2
+

1

4

)
(2)

3.3 Equilibrium Characterization

We now fully characterize the equilibrium information sharing decisions of players in

the following theorem and the proof is again relegated to the Appendix.

Theorem 1. If 1 < δ < δ∗ ≈ 12.88, there are only 2 symmetric equilibrium informa-

tion sharing strategy profiles, (i) full disclosure by both types (characterized in Proposition

4Note that when δ = 9, equations (1) and (2) are exactly the same.
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1); (ii) full concealment by the L type and randomized information sharing by the H type

(characterized in Proposition 3). If δ ≥ δ∗ ≈ 12.88, there are only 2 symmetric equilib-

rium information sharing strategy profiles, (i) full disclosure by both types (characterized in

Proposition 1); (ii) full concealment by both types (characterized in Proposition 2).

Our findings share some similarities and some differences with the existing studies on

players’ information sharing incentive in contests. While Kovenock et al. (2015), under the

setup of an all-pay auction contest, shows that information disclosure is always a strictly

dominated strategy regardless of players’ types, we find that in our setup a player’s infor-

mation sharing incentive may depend on several factors, including one’s own type, the type

distribution, and the other player’s information strategy, and furthermore full concealment

by both types can only be one of the two possible equilibra in the situation that types

are dispersed. Ewerhart and Grünseis (2018), on the other hand, in a non-deterministic

contest environment, identifies an unfairness condition under which full disclosure is the

unique equilibrium with ex-ante commitment, and we show that in our setup full disclosure

is always a possible but never the unique equilibrium without any ex-ante commitment

assumption.

Our result also differs from Wu and Zheng (2017), which assumes ex-ante commitment

and considers only type-independent information strategies. Wu and Zheng (2017) shows

that full concealment is the unique equilibrium when types are dispersed and there are

three equilibria (two asymmetric and one mixed-strategy) when types are concentrated. By

contrast, our results indicate that there are always two symmetric equilibria regardless of

the type distribution, with one of them being full disclosure by both types. Furthermore,

we show that when types are dispersed, full concealment by both types is the other equi-

librium, and when types are concentrated, the other equilibrium is such that the high type

randomizes and the low type fully conceals.5

4 Conclusion

In this paper, we study a 2-stage private-information contest game with group identity

over the prize valuation. In the information sharing stage, players simultaneously choose

whether to announce their group identity, and in the contest stage, each player simulta-

neously plays a within-group lottery contest and an across-group contest. We focus on

5The cutoff value of the type distribution is different between our paper and Wu and Zheng (2017), with
the former’s cutoff being δ∗ ≈ 12.88 and the latter’s cutoff being δ̄ ≈ 12.33.
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symmetric equilibria and fully characterize all equilibria of the game. We show that full

disclosure regardless of type is always an equilibrium information strategy. When types are

concentrated, a type-dependent information sharing strategy in which the low type fully

conceals while the high type randomizes, is the only other possible information sharing

strategy in equilibrium. When types are dispersed, full concealment regardless of type is

the only other possible information sharing strategy in equilibrium.

Directions for further study may include having more than 2 groups and allowing

for different weights on within-group contests and across-group contests in players’ payoff

functions.
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Proof for Lemma 1

Proof. First consider the case where player i is L-type.

C© If i conceals, each of the two contests will be with asymmetric information (Scenario

3), where i knows the opponent’s type.

For the contest with the L-type opponent, the opponent’s effort will be xAL =
(√

vH+
√
vL

3vH+vL

)2
vHvL,

i’s effort will be xALL =
√
vL
√
xAL − xAL , thus i’s payoff will be πA→LL =

xALL

xAL+xALL
vL − xALL =(

1− δ+
√
δ

3δ+1

)2
vL.

When against the H-type opponent, we have xAH =


(√

vH+
√
vL

3vL+vH

)2
vHvL if δ ≤ 9

vH
9

if δ > 9,

and xAHL =

{ √
vL
√
xAH − xAH if δ ≤ 9

0 if δ > 9.
, thus i’s payoff will be πA→HL =

xAHL

xAH+xAHL
vL −

xAHL =


(

1− δ+
√
δ

3+δ

)2
vL if δ ≤ 9

0 if δ > 9.

Thus, i’s expected payoff equals πC©
L =


((

1− δ+
√
δ

3δ+1

)2
+
(

1− δ+
√
δ

3+δ

)2)
vL
2

if δ ≤ 9(
1− δ+

√
δ

3δ+1

)2
vL
2

if δ > 9.

.

D© If i discloses, each contest will be one with full information (Scenario 1).

When against the L-type opponent (the within-group contest), both players’ efforts are

equal to vL
4

. Thus, i’s payoff will be πF→LL = vL
4

.

When against the H-type opponent (the across-group contest), the opponent’s effort

equals vHvL
(vH+vL)2

vH , and i’s effort equals vHvL
(vH+vL)2

vL. Thus, i’s payoff will be πF→HL = vL
(δ+1)2

.

Thus, i’s expected payoff equals πD©
L = vL

8
+ vL

2(δ+1)2
.

Simple comparison shows πC©
L > πD©

L . Therefore, we have siL = 0.

Then, consider the case where player i is H-type.

C© If i conceals, each of the two contests will be with asymmetric information (Scenario

3).

When against the L-type opponent, we have xAL =
(√

vH+
√
vL

3vH+vL

)2
vHvL, and xALH =

√
vH
√
xAL − xAL . Thus, i’s payoff will be πA→LH =

xALH

xAL+xALH
vH − xALH =

(
1− 1+

√
δ

3δ+1

)2
vH .

When against the H-type opponent, we have xAH =


(√

vH+
√
vL

3vL+vH

)2
vHvL if δ ≤ 9

vH
9

if δ > 9,

and xAHH =
√
vH
√
xAH − xAH . Thus, i’s payoff equals πA→HH =

xAHH

xAH+xAHH
vH − xAHH

9



=


(

1− 1+
√
δ

3+δ

)2
vH if δ ≤ 9

4
9
vH if δ > 9.

Thus, i’s expected payoff equals πC©
H =


((

1− 1+
√
δ

3δ+1

)2
+
(

1− 1+
√
δ

3+δ

)2)
vH
2

if δ ≤ 9((
1− 1+

√
δ

3δ+1

)2
+ 4

9

)
vH
2

if δ > 9.

D© If i discloses, the contest will be held in a full information scenario (Scenario 1).

When against the L-type opponent (the across-group contest), the opponent’s effort

equals vHvL
(vH+vL)2

vL, and i’s effort equals vHvL
(vH+vL)2

vH . Thus, i’s payoff will be πF→LH = δ2

(δ+1)2
vH .

When against the H-type opponent (the within-group contest), both players’ efforts

are equal to vH
4

. Thus, i’s payoff will be πF→HH = vH
4

.

Thus, i’s expected payoff equals πD©
H = vH

8
+ δ2vH

2(δ+1)2
.

After comparison, we derive πC©
H > πD©

H . Therefore, we have siH = 0.

Proof for Lemma 2

Proof. C© If i conceals, each of the two contests will be one with no information (Scenario

2). i’s effort in each contest is xNL =
(

1
8

+ 1
2

vHvL
(vH+vL)

2

)
vL.

In the contest with the L-type opponent, the opponent’s effort is xNL =
(

1
8

+ 1
2

vHvL
(vH+vL)

2

)
vL,

and i’s payoff equals πN→LL =
xNL

xNL +xNL
vL − xNL =

(
3
8
− 1

2
vHvL

(vH+vL)2

)
vL.

In the contest with theH-type opponent, the opponent’s effort is xNH =
(

1
8

+ 1
2

vHvL
(vH+vL)

2

)
vH ,

and i’s payoff equals πN→HL =
xNL

xNH+xNL
vL − xNL =

(
vL

vH+vL
− 1

2
vHvL

(vH+vL)2
− 1

8

)
vL.

Thus, i’s expected payoff will be πC©
L = 1

2
πN→LL + 1

2
πN→HL = 1

2

(
v2L

(vH+vL)
2 + 1

4

)
vL.

2© If i discloses, each of the two contests will be one with asymmetric information

(Scenario 3). i’s effort equals xAL =
(√

vH+
√
vL

3vH+vL

)2
vHvL.

In the contest with the L-type opponent, the opponent’s effort is xALL =
√
vL
√
xAL−xAL ,

and i’s payoff will be πA→LL =
xAL

xALL+x
A
L
vL − xAL =

(
√
vH+

√
vL)(2vH+vL−

√
vH
√
vL)
√
vH

(3vH+vL)2
vL.

In the contest with the H-type opponent, the opponent’s effort is xALH =
√
vH
√
xAL−xAL ,

and i’s payoff equals πA→HL =
xAL

xALH+xAL
vL − xAL =

(
√
vH+

√
vL)(2vH

√
vL+vL

√
vL−vH

√
vH)

(3vH+vL)2
vL.

Thus, i’s payoff equals πD©
L = 1

2
πA→LL + 1

2
πA→HL = 1

2

(
√
vH+

√
vL)

2(vH+vL)

(3vH+vL)2
vL.

By comparison, we find πC©
L > πD©

L . Therefore, we have siL = 0.
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Proof for Lemma 3

Proof. C© If i conceals, each of the two contests will be one with no information (Scenario

2). i’s effort in each contest is xNH =
(

1
8

+ 1
2

vHvL
(vH+vL)

2

)
vH .

In the contest with the L-type opponent, the opponent’s effort is xNL =
(

1
8

+ 1
2

vHvL
(vH+vL)

2

)
vL,

and i’s payoff equals πN→LH =
xNB (vH)

xNA (vL)+x
N
B (vH)

vH − xNB (vH) =
(

δ
δ+1
− 1

2
δ

(δ+1)2
− 1

8

)
vH .

In the contest with theH-type opponent, the opponent’s effort is xNH =
(

1
8

+ 1
2

vHvL
(vH+vL)

2

)
vH ,

and i’s payoff equals πN→HH =
xNB (vH)

xNA (vH)+xNB (vH)
vH − xNB (vH) =

(
3
8
− 1

2
δ

(δ+1)2

)
vH ;

Thus, i’s expected payoff equals πC©
H = 1

2
πN→LH + 1

2
πN→HH = 1

2

(
δ2

(δ+1)2
+ 1

4

)
vH .

D© If i discloses, each of the two contests will be one with asymmetric information

(Scenario 3). i’s effort equals xAH =


(√

vH+
√
vL

3vL+vH

)2
vHvL if δ ≤ 9

vH
9

if δ > 9.

When against the L-type opponent, the opponent’s effort is xAHL =

{ √
vL
√
xAH − xAH if δ ≤ 9

0 if δ > 9,
,

and i’s payoff will be πA→LH =
xAH

xAHL+x
A
H
vH − xAH =

{
(
√
δ+1)(2

√
δ+(
√
δ)3−1)

(3+δ)2
vH if δ ≤ 9

8
9
vH if δ > 9.

.

When against the H-type opponent, the opponent’s effort will be xAHH =
√
vH
√
xAH −

xAH , and i’s payoff will be πA→HH =
xAH

xAHH+xAH
vH − xAH =

{
(
√
δ+1)(2+δ−

√
δ)
√
vL

(3+δ)2
vH if δ ≤ 9

2
9
vH if δ > 9;

Thus, i’s expected payoff equals πD©
H = 1

2
πA→LH +1

2
πA→HH =

{
1
2
(
√
δ+1)2(δ+1)
(3+δ)2

vH if δ ≤ 9

5
9
vH if δ > 9.

By comparison, we find πC©
H > πD©

H if δ > δ∗, and πC©
H ≤ πD©

H if 1 < δ ≤ δ∗.

Proof for Proposition 3

Proof. Suppose 1 < δ < δ∗. To show (sL = 0, sH = s∗) is an equilibrium information

sharing strategy profile, it suffices to check that a player of each type has no incentive to

deviate given that all other players play according to (sL = 0, sH = s∗).

First note that (sL = 0, sH = s∗) results in an information sharing outcome where with

probability P = s∗ a player knows his/her opponents’ types and with probability P = 1−s∗

he/she does not know his/her opponents’ types.

By Lemmas 1 and 2, we know that an L-type player prefers concealment (if possible)
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whether he/she knows the types of his/her opponents or not. So any L-type player has no

incentive to deviate from sL = 0.

For an H-type player, his/her payoff by concealing when he/she knows the opponents’

types is πAC©
H =


((

1− 1+
√
δ

3δ+1

)2
+
(

1− 1+
√
δ

3+δ

)2)
vH
2

if δ ≤ 9((
1− 1+

√
δ

3δ+1

)2
+ 4

9

)
vH
2

if δ > 9.
H-type’s payoff by con-

cealing when he/she does not know the opponents’ types is πN C©
H = 1

2

(
δ2

(δ+1)2
+ 1

4

)
vH .

Assuming his/her opponents play the equilibrium strategy (sL = 0, sH = s∗), H-type’s

expected payoff by concealing is thus a weighted sum of the above two terms, πC©
H =

s∗πAC©
H + (1 − s∗)πN C©

H . Similarly, we can write down H-type’s payoff by disclosing when

he/she knows the opponents’ types as πF D©
H = vH

8
+ δ2vH

2(δ+1)2
, and his/her payoff by disclosing

when he/she does not know the opponents’ types as πAD©
H =

{
1
2
(
√
δ+1)2(δ+1)
(3+δ)2

vH if δ ≤ 9

5
9
vH if δ > 9.

.

Assuming his/her opponents play the equilibrium strategy, H-type’s expected payoff by dis-

closing is thus a weighted sum of the above two terms, πD©
H = s∗πF D©

H + (1− s∗)πAD©
H .

Notice that if 1 < δ ≤ 9, πC©
H = πD©

H implies equation (1), and if 9 ≤ δ < δ∗, πC©
H = πD©

H

implies equation (2). Since s∗ equalizes πC©
H and πD©

H , any H-type player is indifferent between

disclosing and concealing, and hence has no incentive to deviate from sH = s∗.

Last we show that s∗ is uniquely determined. Let ∆π(s) ≡ sπAC©
H + (1 − s)πN C©

H −
sπF D©

H − (1 − s)πAD©
H = (πAC©

H − πF D©
H )s + (πAD©

H − πN C©
H )s − (πAD©

H − πN C©
H ). By Lemma 1, we

have πAC©
H > πF D©

H and by Lemma 3, we have πAD©
H > πN C©

H since 1 < δ < δ∗. Thus, ∆π(s) is

increasing in s. Also note that ∆π(0) = −(πAD©
H − πN C©

H ) < 0 and ∆π(1) = πAC©
H − πF D©

H > 0.

Therefore, ∆π(s) = 0 has a unique solution, which is defined as s∗.

Proof for Theorem 1

Proof. We show Theorem 1 in several steps.

Claim 1: (sL ∈ (0, 1], sH ∈ [0, 1)) cannot be an equilibrium information strategy profile.

By Lemmas 1 and 2, we know that an L-type player prefers concealment (if possible)

whether he/she knows the types of his/her opponents or not. So sL > 0 cannot be supported

in any equilibrium such that sH < 1. Thus, Claim 1 holds.

Claim 2: (sL ∈ [0, 1), sH = 1) cannot be an equilibrium information strategy profile.
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Suppose that (sL ∈ [0, 1), sH = 1) is an equilibrium. Consider an H-type player i’s

decision problem. Given the equilibrium information strategy (sL ∈ [0, 1), sH = 1), we have

P = 1, implying that i knows the types of his/her opponents. By Lemma 1, i has incentive

to conceal if possible. Since sL ∈ [0, 1), i can indeed conceal effectively. This contradicts

with sH = 1. Thus Claim 2 holds.

Claim 3: The only possible equilibrium scenarios are (sL = 0, sH ∈ [0, 1)) and (sL =

1, sH = 1).

Claim 3 is immediate by Claims 1 and 2.

Claim 4: (sL = 0, sH ∈ (0, 1)) cannot be an equilibrium information strategy profile

when δ ≥ δ∗ ≈ 12.88.

For δ ≥ δ∗, by Lemmas 1 and 3, H-type players will always have incentive to conceal (if

possible) whether they know their opponents’ types or not, indicating that sH > 0 cannot

be supported in any equilibrium such that sL < 1. Thus, Claim 4 holds.

Claim 5: (sL = 0, sH = 0 cannot be an equilibrium information strategy profile when

1 < δ < δ∗ ≈ 12.88.

Suppose that (sL = 0, sH = 0 is an equilibrium. Consider an H-type player i’s decision

problem. Given the equilibrium information strategy (sL = 0, sH = 0, we have P = 0,

implying that i does not know the types of his/her opponents. For 1 < δ < δ∗ ≈ 12.88,

by Lemma 3, i will have incentive to disclose in such an equilibrium. This contradicts with

sH = 0. Thus Claim 5 holds.

Combining Claims 3-5 and Propositions 1-3, we immediately have Theorem 1.
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